
TECHNICAL UNIVERSITY OF KOŠICE

FACULTY OF ELECTRICAL ENGINEERING AND INFORMATICS

Reinforcement learning in robotic arm position control

Master’s thesis

2020 Bc. Tomáš MERVA

TECHNICAL UNIVERSITY OF KOŠICE

FACULTY OF ELECTRICAL ENGINEERING AND INFORMATICS

Reinforcement learning in robotic arm position control

Master’s thesis

Study programme: Electrical systems

Study specialization: Electrical and Electronics Engineering

Department: Department of electrical engineering and mechatronics

Supervisor: Ing. Peter Girovský, PhD.

Consultant: Prof. dr. Robert Babuška

Assoc. Prof. Ing. František Ďurovský, PhD.

2020 Košice Bc. Tomáš MERVA

Abstract in English

The purpose of this master’s thesis is threefold. The first part provides an introduction to

reinforcement learning and the state-of-the-art research of reinforcement learning for problems,

which cannot be solved by ordinary methods. The second part of the thesis deals with the

implementation of the Soft Actor-Critic algorithm (Haarnoja et al., 2018) in cooperation with

Hindsight Experience Replay (Andrychowicz et al., 2017) algorithm, in order to solve robotic test

environments with sparse rewards. In the last part the combination of the algorithms is

implemented on a robotic arm with the usage of ROS (Robot Operating System).

Key words in English

Reinforcement learning, robotics, ROS

Abstract in Slovak

Predkladaná diplomová práca sa skladá z troch častí. Prvá časť vysvetľuje základy učenia

posilňovaním a najnovší výskum v oblasti reinforcement learning pre problémy, ktoré sa nedajú

vyriešiť klasickými metódami. Druhá časť diplomovej práce sa zaoberá implementáciou Soft Actor-

Critic algoritmu (Haarnoja et al., 2018) v spojení s algoritmom Hindsight Experience Replay

(Andrychowicz et al., 2017) na vyriešenie robotických testovacích úloh so zriedkavými odmenami.

V poslednej časti diplomovej práce sa aplikuje kombinácia algoritmov na robotické rameno za

použitia ROS (Robot Operating System).

Key words in Slovak

Reinforcement learning, robotika, ROS

Declaration

I hereby declare that this thesis is my own work and effort. Where other sources of

information have been used, they have been acknowledged.

Košice, 25. April 2020 ..

 Signature

Acknowledgement

Firstly, I would like to thank my supervisor Ing. Peter Girovský, PhD. for his constant support

during the last three years in terms of creating amazing research environment thanks to which I

could grow as a person and an engineer, and of course for helping me out with this thesis.

My sincere thanks also goes to doc. Ing. František Ďurovský, PhD., who was trying to create

as much research possibilities as possible during the last three years for me as well as for my

colleagues. Moreover, his continues material and knowledge support was invaluable.

Even though I was an unknown student from the foreign university, Prof. dr. Robert

Babuška was willing to be my consultant of this thesis for which I will have been profoundly grateful.

Thanks to him I was capable to discover the magic of reinforcement learning and I have always been

motivated to overcome my ideas within this thesis.

A special thanks to everyone from the Institute of Automation, Mechatronics, Robotics and

Production Systems for providing the tools, space and freedom to working on my thesis.

Furthermore, I would like to thank doc. Ing. Ivan Virgala, PhD. for his tremendous help with ROS.

I cannot forget to thank Ing. František Ďurovský Junior, PhD. for his patience with me

regarding ROS and robotics, Mgr. Michal Malý, PhD. for consulting the topic of the thesis and Ing.

Viktor Šlapák, PhD. for helping me out with understanding publications.

Last but not the least, I would like to thank my family, because if it weren’t for my family, I

would not have reached this far.

Preface

The rapid growth of the computers in terms of the computing power has enabled the huge

leap in artificial intelligence development. One of the successful examples of the usage of artificial

intelligence is the DQN policy (Mnih et al., 2013) that has accomplished not only to be at the same

level as human player in playing Atari games, but in a lot of these games it has been even better.

For me the most fascinated part of this success is that the policy has learnt to play Atari games

without prior human knowledge. This approach can be also used in robotics, with the result that

the robots are capable of interacting with the environment that is constantly and for the most part

unexpectedly changing. Therefore, the implementation of robots is no more limited to simple

repetitive tasks.

I have chosen this topic for my master’s thesis with the intention of learning about artificial

intelligence, especially reinforcement learning, and deepening my knowledge in robotics using ROS.

Regarding ROS this thesis is a continuation of my bachelor’s thesis, thanks to which I have got my

first experience with this standard of robotics development.

This thesis was conducted in cooperation with the Department of Electrical Engineering and

Mechatronics of the Faculty of Electrical Engineering and Informatics and Institute of Automation,

Mechatronics, Robotics and Production Systems of Faculty of Mechanical Engineering at the

Technical University of Košice.

FEI KEM

8

Content

List of Figures ... 10

List of Tables ... 11

List of Symbols and Abbreviations ... 12

1. Introduction ... 13

2. Reinforcement Learning ... 15

2.1. Policy .. 15

2.1.1. Categorical Policy ... 16

2.1.2. Gaussian Policy ... 16

2.2. Reward and Return .. 17

2.3. Value functions ... 18

2.3.1. Bellman Equations .. 19

2.4. Actor-Critic Taxonomy .. 20

2.4.1. Critic-only Methods .. 20

2.4.2. Actor-only Methods ... 20

2.4.3. Actor-Critic Methods .. 21

3. Hindsight Experience Replay .. 23

4. Soft Actor-Critic .. 27

4.1. Maximum Entropy RL ... 27

4.2. Target Network .. 28

4.3. Clipped Double Q-learning ... 29

4.4. SAC Algorithm .. 30

4.4.1. Automating Entropy Adjustment ... 32

5. Implementation of RL Within ROS ... 34

5.1. ROS ... 34

5.2. KUKA Agilus .. 34

5.2.1. Robot Model ... 36

FEI KEM

9

5.2.2. Robot Kinematics ... 36

5.3. Basic Motion Control Architecture ... 37

5.4. KUKA Reach .. 39

5.4.1. Reward Function .. 39

5.4.2. States .. 39

5.4.3. Actions .. 40

5.4.4. ROS Mechanism ... 40

5.5. KUKA Push .. 44

5.5.1. Kinect v2 Sensor ... 44

5.5.1. Reward Function .. 47

5.5.2. States and Actions .. 47

5.5.3. ROS Mechanism ... 48

Conclusion .. 50

Bibliography ... 52

Appendices ... 54

FEI KEM

10

List of Figures

Fig. 1 Scheme of agent-environment interaction [7] ... 15

Fig. 2 Backup diagram for Vπ(s) [7] ... 19

Fig. 3 Disadvantage of simplest policy gradient [11] ... 21

Fig. 4 Actor-critic structure [6] ... 22

Fig. 5 Idea of HER [18] .. 23

Fig. 6 Comparison of using single goal with using multiple goals [17] ... 24

Fig. 7 Neural network with additional goal .. 24

Fig. 8 Comparison of training curves of different algorithms with SAC (yellow) on continuous control

benchmarks [10]... 31

Fig. 9 Comparison of using different approaches within temperature parameter α 32

Fig. 10 System Overview .. 34

Fig. 11 Workspace graphic [24] .. 35

Fig. 12 KUKA Agilus model ... 36

Fig. 13 Motion control architecture ... 38

Fig. 14 KUKA Reach environment ... 42

Fig. 15 Detailed learning performance of SAC+HER in KUKA Reach environment 43

Fig. 16 Long-term learning performance of SAC+HER in KUKA Reach environment 43

Fig. 17 System overview extended with Kinect One sensor .. 44

Fig. 18 Technical specifications of Kinect v2 .. 44

Fig. 19 Kinect v2 description .. 45

Fig. 20 Camera calibration .. 45

Fig. 21 Eye-on-base calibration of Kinect .. 46

Fig. 22 Overview of ROS mechanism for KUKA Push ... 48

Fig. 23 KUKA Push environment ... 49

Fig. 24 Learning performance of SAC+HER in KUKA Push environment .. 49

FEI KEM

11

List of Tables

Tab. 1 Original transition in replay buffer .. 25

Tab. 2 Additional transition in replay buffer .. 25

Tab. 3 Pseudocode of HER [17] .. 26

Tab. 4 Pseudocode of SAC [1] .. 33

Tab. 5 Axis data [24] ... 35

Tab. 6 Comparison of KDL and TRACK-IK [14] .. 37

FEI KEM

12

List of Symbols and Abbreviations

RL Reinforcement Learning

SAC Soft Actor-Critic

HER Hindsight Experience Replay

ROS Robot Operating System

AI Artificial Intelligence

tf Transform Library

IK Inverse kinematics

DoFs Degrees of Freedom

fps Frames per second

DDPG Deep Deterministic Policy Gradient

FEI KEM

13

1. Introduction

In 2012 the American military research agency DARPA the competition DARPA Robotics

Challenge 2015, which held from 2012 to 2015. The purpose was to address and promote

innovation in human-supervised robotic technology for disaster-response operations. The primary

technical goal was to develop ground robots capable of accomplishing eight complex tasks in

difficult environments, such as using hand tools or driving a vehicle [2]. The original requirement

was to use fully autonomous robots, although because of the complexity of the challenging tasks,

DARPA had to change it to human-supervised robots (teleoperation) [3]. The winning team KAIST

from South Korea successfully accomplished all eight tasks in 44 minutes and 28 seconds. However,

watching the robot doing each task, such as a door opening, leaves someone wondering if this is

the way how people would do it, especially in terms of speed. By the time the team KAIST’s robot

opened the door, the human would do it around ten times and without any supervision. [4]

The reason for limited applications of robots in the real world is that environment is constantly

changing, and it is very difficult to “hard-code” the robot’s movement in such environment.

Therefore, robots are mainly used to do repetitive and precise tasks in well-known environments.

By environment it is meant everything around a robot including objects it interacts with. Another

issue is designing robotic control pipeline for autonomous operation. At every stage of the pipeline

some kind of mistake can be made, which results in accumulating the error as it goes through other

stages and the robot will not do anything useful. Therefore, the whole decision process has to be

slowed down in order to avoid that assumptions within each stage are not violated too much. [4]

Reinforcement learning offers to robotics a framework and set of tools for the design of

sophisticated and hard-to-engineer behaviours. The concept behind reinforcement learning is that

it enables a robot to autonomously discover an optimal behaviour through trial-and-error

interactions with its environment. Instead of providing a detailed solution to a problem by a

supervisor, the robot gets feedback in terms of a numerical value (reward) that measures the one-

step performance of the robot. The robot tries to maximize this reward over time. [5] The whole

process of learning is inspired by the way how animals or children learn certain tasks. The behaviour

that resulted with a small reward will unlikely be repeated, whereas the behaviour with a high

reward will. [6]

Reinforcement learning has been famously used to create artificial intelligence for solving

strategy games such as Go (Silver et al., 2016) or Dota (OpenAI, 2018). However, using

reinforcement learning within robotics differs substantially from most well-studied reinforcement

learning benchmark problems. Tasks in robotics are mostly represented with high-dimensional,

FEI KEM

14

continuous states and actions. The observation of the true state is most of the times incomplete

and consists of a lot of noise. As a consequence, a robot is not able to know exactly in which state

it is. Another issue is that many completely different states seem similar, which results in robot’s

unreasonable actions. Besides aforementioned problems there are many other challenges such as

sparse rewards, model errors or an appropriate learning method. [5]

Model-free reinforcement learning algorithms suffer from two major problems, high sample

complexity and convergence properties. With regard to the first challenge, RL methods require an

enormous amount of samples of experience. With the higher-dimensional states the RL algorithms

need substantially more. The poor sample efficiency is primary caused by on-policy learning, in

which the new version of a policy can be created only by using experience collected by the previous

version of the policy. This problem can be reduced with off-policy algorithms that learn from and

reuse experience obtained by any version of the policy. However, off-policy algorithms have worse

properties than on-policy methods in terms of stability and convergence. Typical example of this

issue is DDPG algorithm that is good in terms of sample-efficiency but is notoriously problematic to

use due to its hyper parameter sensitivity. The recent progress in field of the model-free deep RL

algorithms for continuous state and action space is the off-policy algorithm Soft Actor-Critic, which

presents sample-efficiency and stability at the same time. This algorithm has successfully solved

robotic tasks such as rotating a valve or stacking Lego blocks. [9] [10]

The aim of this work is to test the SAC algorithm extended with the HER algorithm, which is

capable to solve the problem with sparse rewards, on custom robotic environments created using

ROS. The thesis is divided into three sections. The first section provides all necessarily prerequisites

that someone needs in order to understand the second sections, in which the HER and the SAC

algorithms are explained. The third section describes creating the custom environments using ROS

and summarizes the results of testing SAC + HER in those environments.

FEI KEM

15

2. Reinforcement Learning

Reinforcement learning is one of the fields of machine learning, which can be called as a science

of decisions making. In reinforcement learning a learner is not told which actions to take, contrary

to the most of areas of machine learning, but instead he must discover which actions yield the most

reward by trying them. The learner is denoted by the agent, who interacts with the world,

comprising everything outside of the agent, called the environment. After the agent has done an

action at, he gets from the environment an observation of the environment termed the state st and

a reward rt for this particular action. Rewards are numerical values, which the agent tries to

maximize over time [7] [8].

Fig. 1 Scheme of agent-environment interaction [7]

To keep an explanation of reinforcement learning simple, it is considered that the agent and

environment interact at discrete time steps t = 0, 1, 2, … At each time step t the agent gets some

representation of state st and according the state he selects an action at. As a consequence of its

action, the agent receives a numerical reward rt+1 and finds itself in a new state st+1 [7]. The process

of this interaction is shown in Fig. 1.

2.1. Policy

The most important part of a human role in making this kind of artificial intelligence is creating

a policy denoted as π. A policy π is essentially a map from a state to an action. In psychology it

would be called a set of stimulus-response rules. The policy can be a simple function or a lookup

table, but also it may involve extensive computation. The policy represents the core of the

reinforcement learning agent, because it defines agent’s way of behaving at a given time. A

reinforcement learning algorithm is used for teaching a policy in a way that it guides changes of the

policy’s parameters in order to maximize a reward. Policies can be either deterministic or

stochastic. A deterministic policy maps a state to an action. It gets an action and the function returns

an action to take (1). [7][8]

FEI KEM

16

 𝜋: 𝑆 → 𝐴 (1)

A stochastic policy outputs a probability distribution over actions (2). Instead of being completely

sure of taking the action a, there is a probability that the different action will be taken. This

approach supports exploration of different actions. This thesis deals with stochastic policies. [11]

 𝜋(𝑎|𝑠) => 𝑎𝑡~𝜋(. |𝑠𝑡) (2)

The two most common kinds of stochastic policies are categorical policies and diagonal Gaussian

policies. [1]

2.1.1. Categorical Policy

A categorical policy is very similar to a classifier in a sense that the neural network is build the

same way for the categorical policy as for the classifier. The number of outputs in the final layer of

the neural network depends on the number of discrete actions. The neural network outputs logits

for each action, followed by the Softmax function in order to convert the logits into probabilities.

The action, which will be taken, is chosen by sampling based on the probabilities. With regard to

better and easier optimization of a policy it is preferable to use log-likelihood for training purposes.

If the last layer of probabilities is denoted as a vector Pθ(s), the log-likelihood for an action a can be

obtained as follows:

 log 𝜋𝜃(𝑎|𝑠) = log[𝑃𝜃(𝑠)]𝑎 (3)

Therefore, it is convenient to use the Log-Softmax function instead of the classical Softmax function

as the activation function for the last layer. In general, it can be said that a neural network outputs

the parameters for a categorical distribution. Categorical policies are used in environments with

discrete action space [1].

2.1.2. Gaussian Policy

For solving robotic tasks, the RL algorithms have to deal with the large continuous action spaces

with an infinite number of actions. Unlike computing probabilities for each action, as it is in case of

using categorical policies, Gaussian policies learn statistics of the probability Gaussian (normal)

distribution. A Gaussian policy has always a neural network that has a state s as an input, and

outputs mean actions µθ(s). The other parameter, which defines Gaussian distribution, is a standard

deviation σθ(s). A standard deviation could be represented by a neural network, that maps from

states to standard deviation, or by a single vector. In the second case, standard deviations are not

outputs from a function, but they are standalone parameters. Either way log-standard deviations

are used directly instead of standard deviations. [1][7]

FEI KEM

17

Actions are chosen on the base of the given the mean action µθ(s) and the standard deviation

σθ(s) that is elementwise multiplied with a noise vector z (4).

 𝑎 = 𝜇𝜃(𝑠) + 𝜎𝜃(𝑠) ⊙ z (4)

Since neural networks do not produce probabilities for each action, the log-likelihood of a k-

dimensional action a is computed as follows:

 log 𝜋𝜃(𝑎|𝑠) = −
1

2
(∑ (

(𝑎𝑖 − 𝜇𝑖)2

𝜎𝑖
2 + 2 log 𝜎𝑖) + 𝑘 log 2𝜋

𝑘

𝑖=1

) (5)

2.2. Reward and Return

Rewards are one of the most fundamental quantity in RL. A reward rt is simply a number that

indicates how well agent is doing at step t. Therefore, the agent’s job is to sum up rt-s and get as

much reward as possible. Rewards depend on the current state of the environment, the action just

taken and the next state of the environment (6). However, in practice it is simplified to just the

current state and the action. [1]

 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) (6)

A reward is defined by a reward function, which maps each state (or state-action pair) of the

environment to a single number. A reward function basically guides an agent through the whole

process of the agent’s interaction with environment with the intention of accomplishing a required

task. Using a different reward function in the same environment learns an agent to accomplish

a different task. An agent gets a reward each timestep, therefore in general the agent’s goal is to

maximize the return, which can be defined as some specific function of the reward sequence. The

simplest function of the return is the sum of the rewards: [1] [7]

 𝑅𝑡 = ∑ 𝑟𝑡

𝑇

𝑡=0

 (7)

The better function is using the discounted return, which uses a discount factor γ (8). It is the

constant with value between 0 and 1. With the bigger discount factor agent cares more about the

long-term reward. On the other hand, with the smaller discount factor agent cares more about the

immediate (short-term) reward. The undiscounted return is used in case of an episode with a fixed

step size, whereas the discounted return is used in continuing tasks. [1] [7]

 𝑅𝑡 = ∑ 𝛾𝑡𝑟𝑡

∞

𝑡=0

 (8)

FEI KEM

18

With the knowledge of what return is, the goal in RL is to select the policy that maximizes

expected return when the agent acts according to it [1]. If the expected return is denoted as J(π),

then it is expressed as:

 𝐽(𝜋) = 𝐸[𝑅(𝜏)] (9)

where τ is a trajectory, which is a sequence of states and actions in the certain environment:

 𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, 𝑠2, …) (10)

With the defined expected return J(π), the goal of the optimization in RL is to find the optimal policy:

 𝜋∗ = arg max
𝜋

𝐽(𝜋) (11)

2.3. Value functions

The other essential quantity in RL is a value function, which tells an agent how good it is to be

in a certain state or how good it is to perform a given action in a certain state. A value function

estimates how much total reward an agent should expect in the future. The future rewards depend

on agent’s actions, therefore a value function is defined with respect to a given policy. A large

majority of RL algorithms use value functions. There are four main value functions: [1] [8]

1) The state-value function is the expected return when starting in the state s and following

policy π thereafter:

 𝑉𝜋(𝑠) = 𝐸𝜋[𝑅𝑡|𝑠𝑡 = 𝑠] (12)

2) The action-value function is the expected return when starting in the state s, taking the

action a and following policy π thereafter:

 𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (13)

3) The optimal state-value function is the expected return when starting in the state s and

following the optimal policy π thereafter:

 𝑉∗(𝑠) = max
𝜋

𝑉𝜋(𝑠) (14)

4) The optimal action-value function is the expected return when starting in the state s, taking

the action a and following the optimal policy π thereafter:

 𝑄∗(𝑠) = max
𝜋

𝑄𝜋(𝑠, 𝑎) (15)

In Deep RL neural networks are used as approximators of optimal value functions in a way that

a state or a state-action pair inputs into the neural network, which outputs the value of the state s

or value of taking the action a in the state s. As the policy converges to the optimal policy, so the

value function network converges to the optimal value function. [8]

FEI KEM

19

2.3.1. Bellman Equations

One of the most fundamental relationships in RL is called Bellman equation. The equation

decomposes state-value functions into two parts, the immediate reward rt and the discounted value

of a successor state γVπ(st+1), in order to express a relationship between the value of a state and the

values of its successor states. In case of state-value functions, the equation is called the Bellman

equation for Vπ. [7] [8]

𝑉𝜋(𝑠) = 𝐸𝜋[𝑅𝑡|𝑠𝑡 = 𝑠]

= 𝐸𝜋[𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ⋯ |𝑠𝑡 = 𝑠]

= 𝐸𝜋[𝑟𝑡 + 𝛾(𝑟𝑡+1 + 𝛾𝑟𝑡+2 + ⋯)|𝑠𝑡 = 𝑠]

= 𝐸𝜋[𝑟𝑡 + 𝛾𝑅𝑡+1|𝑠𝑡 = 𝑠]

= 𝐸𝜋[𝑟𝑡 + 𝛾𝑉𝜋(𝑠𝑡+1)|𝑠𝑡 = 𝑠]

(16)

Accordingly, the same principle can be applied to the action-value function Qπ(s,a):

 𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋[𝑟𝑡 + 𝛾𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1)|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (17)

It is important to realize the connection between a state-value function and an action-value

function. One value function can be expressed by the other one. In the Fig. 2 each empty circle

represents a state and the solid circles represent possible actions. [1] [7]

Fig. 2 Backup diagram for Vπ(s) [7]

Assume that the agent is in the state st and he can choose from three possible actions based on the

probabilities defined by the policy. For each of the actions the agent might take, there is the Q-

value (action-value function) that tells the agent how good it is to take the certain action from the

state. In order to figure the value of the state-value function for the state st, it is necessary to look

ahead one step to the Q-values of the actions and average them as follows:

 𝑉𝜋(𝑠) = ∑ 𝜋(𝑎|𝑠)

𝑎∈𝐴

𝑄𝜋(𝑠, 𝑎), (18)

where A is action space (all possible actions) and π(a|s) is probability of taking an action in a given

state defined by a policy. To sum up value functions, a state-value function tells an agent how good

FEI KEM

20

it is to be in a particular state, whereas an action-value function tells the agent how good it is to

take a particular action from a given state. [7][8]

2.4. Actor-Critic Taxonomy

2.4.1. Critic-only Methods

The best example of critic-only methods is the Q-learning algorithm. Instead of using an explicit

function for the policy, the Q-learning algorithm is based on using an action-value function to

determine a particular action from a given state. The simplest and original version of the Q-learning

algorithm is to use a lookup table. The columns are all possible actions, whereas the rows are all

possible states. The value of each cell is the expected reward for the given state and action and the

agent chooses the action with the biggest value among the all possible actions (19). The modern

version of the Q-learning algorithm uses a neural network as the Q-value approximator. The outputs

from the neural network represent Q-values of each possible action. This form of the algorithm is

called Deep Q-learning. [1] [6] [11]

 𝑎(𝑠) = arg max
𝑎

𝑄(𝑠, 𝑎) (19)

2.4.2. Actor-only Methods

On the other hand, actor-only methods work with some function for the policy and do not use

any form of a value function. The most common actor-only methods are policy gradient methods

that optimize an objective function J(πθ). In terms of RL the cost function is the expected return (9).

Policy gradient algorithms optimize policy’s parameters 𝜃 by gradient ascent:

 𝜃𝑘+1 = 𝜃𝑘 + 𝛼∇𝜃𝐽(𝜋𝜃), (20)

where ∇𝜃𝐽(𝜋𝜃) is called the policy gradient and its simplest form can be estimated as follows:

 𝑔 =
1

|𝐷|
∑ ∑ ∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡)𝑅(𝜏)

𝑇

𝑡=0𝜏∈𝐷

 (21)

The idea behind using policy gradient is to increase or decrease the probability of an action in

order to find a parameter 𝜃 that maximizes the expected return. The log-likelihood for an action a

is multiplied by the return for a whole episode. If the episode was successful, the probability of

taking the same action in a given state is increased. However, multiplying the log-likelihood of an

action with the return creates a big problem. If the return is high, all actions that the agent took are

considered as good, even though some were really bad. In the following figure there is shown that

even the bad action will be evaluated as a good one, because averaging all rewards from each action

will result in the high return. [1] [6] [11]

FEI KEM

21

Fig. 3 Disadvantage of simplest policy gradient [11]

2.4.3. Actor-Critic Methods

In terms of actor-critic algorithms, the learning agent consists of two separate entities. The

policy structure that is responsible for generating actions is called the actor. The second entity is

the estimated value function known as the critic. The concept of an actor-critic algorithm is very

similar to a scenario of two friends playing a video game. At the beginning of playing the unknown

game, the player is randomly interacting in the video game environment, whereas the other friend

is carefully observing the player’s action and providing feedback. As a consequence, the player

(actor) is getting better in choosing right actions but the critic is also improving on providing better

feedback. With regard to modern RL, having the actor-critic structure means having two separate

neural networks (one for the actor, the other one for the critic), which must be optimized

separately. [1] [6] [11]

For the purpose of better explanation, the policy gradient can be expressed in a general form:

 ∇𝜃𝐽(𝜋𝜃) = 𝐸 [∑ ∇𝜃 log 𝜋𝜃

∞

𝑡=0

(𝑎𝑡|𝑠𝑡)𝜓𝑡] (22)

where 𝜓𝑡 can be any of the following:

1. 𝑅(𝜏) 4. 𝑄𝜋(𝑠𝑡 , 𝑎𝑡)

2. ∑ 𝑟𝑡
𝑇
𝑡=𝑡 5. 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) − 𝑉𝜋(𝑠𝑡)

3. ∑ (𝑟𝑡 − 𝑏(𝑠𝑡))𝑇
𝑡=𝑡 6. 𝑟𝑡 + 𝑉𝜋(𝑠𝑡+1) − 𝑉𝜋(𝑠𝑡)

Usually, a state-value function is chosen as the critic. Each timestep the critic evaluates whether

the new state is better or worse than the previous one. This evaluation is called the TD error and it

is expressed as 𝜓𝑡 = 𝑟𝑡 + 𝑉𝜋(𝑠𝑡+1) − 𝑉𝜋(𝑠𝑡). The following figure depicts the actor-critic structure

in case of using the TD error as a guidance for the actor. Naturally, the aforementioned evaluation

can have a different form than the TD error. [6] [16]

FEI KEM

22

Fig. 4 Actor-critic structure [6]

FEI KEM

23

3. Hindsight Experience Replay

One of the challenges within solving robotic tasks is dealing with sparse rewards. The state

space of robotic environments is hard to explore because of its large size. As a consequence, an

agent receives the reward 𝑟𝑡 = −1 almost every timestep, which results that a standard RL

algorithm is bound to fail. Despite the problems with sparse rewards, using dense rewards is much

more inconvenient due to the need to design the right reward function that is capable of reflecting

the task precisely but is also carefully shaped in order to guide the policy optimization. Therefore,

there is an effort to devise new algorithms that allow sample-efficient learning from sparse

rewards. The Hindsight Experience Replay algorithm does just that and is easy to implement. [17]

[18]

Assume that a human is to slide a puck across the table in order to get it to the goal destination.

The first attempt did not accomplish the desired goal, but it achieved a different one. Even though

the first attempt was not successful, the person gains experience about the required strength and

angle for accomplishing the achieved goal. The gained experience will be used in the next attempts.

With each unsuccessful attempt, the person is closer and closer to accomplish the task. This process

of learning, learning from mistakes, inspired OpenAI to devise HER. After an unsuccessful episode,

the achieved goal substitutes the desired one and the agent can obtain a learning signal since it has

achieved some goal. Repeating this process will result in successfully accomplishing arbitrary goals

as well as the desired goals. [17] [18]

Fig. 5 Idea of HER [18]

FEI KEM

24

The next advantage of HER is that it enables an agent to be flexible in terms of accomplishing

different goals in the same environment. This kind of environment is called the goal-based or goal-

oriented environment. Each possible state of the environment can be considered as a separate goal.

The goal can also specify only certain properties of the environment, for example just one

coordinate. In order to want to learn only one specific goal, it is still recommended to learn multiple

goals since HER learns faster using multiple goals. In the following figure is shown that using only

the DDPG algorithm is unable to solve the pushing task (a robotic arm was to push a block to a goal

position) without HER. [17] [18]

Fig. 6 Comparison of using single goal with using multiple goals [17]

(Left: multiple goals, Right: single goal)

In case of using a neural network as a policy, the input consists of a given state but also of a

desired goal.

Fig. 7 Neural network with additional goal

FEI KEM

25

 𝜋(𝑎|𝑠) → 𝜋(𝑎|𝑠, 𝑔) (23)

The replay buffer within HER consists of transitions of each timestep. Each transition is a list of four

tuples (𝑠𝑡‖𝑔, 𝑎𝑡 , 𝑟𝑡, 𝑠𝑡
′‖𝑔), where ‖ denotes concatenation. Assume the example in which the

agent has failed a given task after four timesteps (𝑡0, 𝑡1, 𝑡2, 𝑡3) and has not achieved a given goal 𝑔.

However, agent has ended up in the certain state 𝑠4, which can be denoted as 𝑔′ = 𝑠4 and it will

serve as the arbitrary goal. So far, the replay buffer contains four transitions:

Tab. 1 Original transition in replay buffer

timestep 𝑠𝑡‖𝑔 𝑎𝑡 𝑟𝑡 𝑠𝑡+1‖𝑔

𝑡0 𝑠0‖𝑔 𝑎0 𝑟0 = −1 𝑠1‖𝑔

𝑡1 𝑠1‖𝑔 𝑎1 𝑟1 = −1 𝑠2‖𝑔

𝑡2 𝑠2‖𝑔 𝑎2 𝑟2 = −1 𝑠3‖𝑔

𝑡3 𝑠3‖𝑔 𝑎3 𝑟3 = −1 𝑠4‖𝑔

For HER each transition has to be stored twice, although with a different goal. After saving the

original transitions, the second transition is created by copying the first one but with an arbitrary

goal 𝑔′ instead of the original goal 𝑔. As a result of the substitution, the agent obtains a learning

signal.

Tab. 2 Additional transition in replay buffer

timestep 𝑠𝑡‖𝑔′ 𝑎𝑡 𝑟𝑡 𝑠𝑡+1‖𝑔′

𝑡0 𝑠0‖𝑔′ 𝑎0 𝑟0 = −1 𝑠1‖𝑔′

𝑡1 𝑠1‖𝑔′ 𝑎1 𝑟1 = −1 𝑠2‖𝑔′

𝑡2 𝑠2‖𝑔′ 𝑎2 𝑟2 = −1 𝑠3‖𝑔′

𝑡3 𝑠3‖𝑔′ 𝑎3 𝑟3 = 0 𝑠4‖𝑔′

HER can be implemented using four different strategies. The aforementioned process is called

the final strategy, because the additional goals correspond to the final state of the environment.

The other three strategies are: future, episode and random. For the purposes of this thesis, an

episode is randomly divided into four parts, which results in four arbitrary goals and consequently

the agent has four new learning signals.

FEI KEM

26

Tab. 3 Pseudocode of HER [17]

1: Initialize a policy π, learning algorithm and empty buffer D

2: for episode = 1,…,M do

3: Sample a goal g and an initial state 𝑠0

4: for t = 0,…,T-1 do

5: Sample an action 𝑎𝑡 using the policy π: 𝑎𝑡 ← 𝜋(𝑠𝑡||𝑔)

6: Execute the action 𝑎𝑡 and observe a new state 𝑠𝑡+1

7: end for

8: Sample a set of additional goals for replay 𝐺 ≔ 𝑆 from the current episode

9: for t = 0,…,T-1 do

10: 𝑟𝑡 = 𝑟𝑓(𝑠𝑡 , 𝑎𝑡 , 𝑔), where 𝑟𝑓 is a reward function

11: Store the transition (𝑠𝑡||𝑔, 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1||𝑔) in D

12: for 𝑔′ ∈ 𝐺 do

HER
13: 𝑟′ = 𝑟𝑓(𝑠𝑡 , 𝑎𝑡 , 𝑔′)

14: Store the transition (𝑠𝑡||𝑔′, 𝑎𝑡 , 𝑟′, 𝑠𝑡+1||𝑔′) in D

15: end for

16: for t = 1,…,N do

17: Sample a minibatch B from the replay buffer D

18: Perform optimization using the learning algorithm and the minibatch B

19: end for

20: end for

FEI KEM

27

4. Soft Actor-Critic

Before explaining the Soft Actor-Critic algorithm it is necessarily to introduce few tricks and

concepts that are essential parts of the algorithm.

4.1. Maximum Entropy RL

In 1948 Claude Shannon founded the “Information theory” that was aimed for reliable and

efficient transmitting a message from a sender to a recipient. Based on this concept the term

entropy has found an application in informatics. In general, entropy is the average of amount of

information that someone gets from one sample drawn from the given probability distribution p

(16). It says how unpredictable the probability distribution p is or how random a random variable

is. The easiest example of what entropy represents is a tossing a coin. There is a 50/50 chance of

either outcome, so it has high entropy. If a coin is biased so that it always comes up the head, then

entropy is low. [1] [12] [13]

 𝐻(𝑝) = − ∑ 𝑝𝑖 log2(𝑝𝑖)

𝑖

 (24)

As it has already been mentioned, the standard goal of an agent is to maximize the expected

sum of reward:

 𝜋∗ = arg max
𝜋

𝐽(𝜋) = arg max
𝜋

∑ 𝐸[𝑟(𝑠𝑡|𝑎𝑡)]

𝑡=0

 (25)

Instead of maximizing only the expected return, maximum entropy RL optimizes policies also with

the expected entropy of the policy. Therefore, maximum entropy adds the expect entropy of the

policy into the standard RL objective as follows:

 𝐽(𝜋) = ∑ 𝐸[𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛼. 𝐻(𝜋(. |𝑠𝑡))]

𝑡=0

, (26)

where the parameter α is called the temperature parameter, which determines the stochasticity of

the optimal policy. The higher coefficient α supports more exploration of the environment, whereas

in the limit 𝛼 → 0 the standard maximum expected return objective is recovered. In order to ensure

that the sum of expected returns and entropies is finite, it is common practice to use a discount

factor γ. Consequently, the 18th equation is modified as follows:

 𝐽(𝜋) = 𝐸 ∑ 𝛾𝑡[𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛼. 𝐻(𝜋(. |𝑠𝑡))]

𝑡=0

 (27)

This form of the objective function has three main advantages. The first benefit is that the policy is

forced to explore widely and unpromising areas are ignored. The second advantage is related to

FEI KEM

28

the first one. As the result of improved exploration, the learning speed is improved over methods

using the standard objective. The last but not least advantage is that in cases where multiple actions

seem to be equally promising, the probability mass of those action would be equal. From the 19th

equation the new state-value function Vπ(s) can be derived so it also includes the entropy bonuses:

 𝑉𝜋(𝑠) = 𝐸 [∑ 𝛾𝑡 (𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛼𝐻(𝜋(. |𝑠𝑡)))

∞

𝑡=0

| 𝑠0 = 𝑠] (28)

Accordingly, the new action-value function Qπ(s,a) can be expressed as follows:

 𝑄𝜋(𝑠, 𝑎) = 𝐸 [∑ 𝛾𝑡𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛼

∞

𝑡=0

∑ 𝛾𝑡𝐻(𝜋(. |𝑠𝑡))

∞

𝑡=1

| 𝑠0 = 𝑠, 𝑎0 = 𝑎] (29)

With these definitions, the soft state-value function can be obtained as:

 𝑉𝜋(𝑠) = 𝐸[𝑄𝜋(𝑠, 𝑎) + 𝛼𝐻(𝜋(. |𝑠))] (30)

and by using the Bellman equation for the action-value function, the soft action-value function is

expressed as: [1] [12] [13]

𝑄𝜋(𝑠, 𝑎) = 𝐸 [𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾 (𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1) + 𝛼𝐻(𝜋(. |𝑠𝑡+1)))]

= 𝐸[𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑉𝜋(𝑠𝑡+1)]
(31)

4.2. Target Network

In order to understand SAC, it is also necessary to understand the concept of using target

networks in RL. The aforementioned tabular Q-learning algorithm updates a Q-function using the

Bellman equation:

 𝑄𝑘+1(𝑠𝑡, 𝑎𝑡) ← 𝑄𝑘(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾 max
𝑎𝑡+1

𝑄𝑘(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄𝑘(𝑠, 𝑎)], (32)

where 𝑟𝑡 + 𝛾 max
𝑎𝑡+1

𝑄𝑘(𝑠𝑡+1, 𝑎𝑡+1) is called 𝑡𝑎𝑟𝑔𝑒𝑡(𝑠𝑡+1) so the previous equation can be expressed

as follows:

 𝑄𝑘+1(𝑠𝑡, 𝑎𝑡) ← 𝑄𝑘(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑡𝑎𝑟𝑔𝑒𝑡(𝑠𝑡+1) − 𝑄𝑘(𝑠, 𝑎)] (33)

The other version of this algorithm is called Approximate Q-learning. Instead of using a table, a

parametrized Q function 𝑄𝜃(𝑠, 𝑎) is used in the form of a linear function or a complicated neural

network. Update of a parametrized Q-function is defined by:

 𝜃𝑘+1 ← 𝜃𝑘 − 𝛼∇𝜃𝑘
[
1

2
(𝑄𝜃𝑘

(𝑠𝑡 , 𝑎𝑡) − 𝑡𝑎𝑟𝑔𝑒𝑡(𝑠𝑡+1))
2

] (34)

FEI KEM

29

Using neural networks with Q-learning requires some tricks. The objective of the previous equation

is to get the Q-value to approximate to the target Q-value. When weights of the network are

updated, the outputted Q-values will be changed but so will the target Q-values since they are

computed using the same weights. As a consequence, the Q-values with each iteration are moving

closer to the target Q-values but the target Q-values are also moving to the same direction, so they

are further and further from the Q-values as a result. This results in chasing a nonstationary target,

which makes the optimization unstable. The solution is to create a completely separate network

called target network that outputs target Q-values. The target network is a clone of original

network, although its weights are updated every certain number of timesteps instead of every

iteration. The parameters of the target network are denoted 𝜃𝑡𝑎𝑟𝑔. In case of algorithms based on

Deep Q-learning Networks (DQN), the target network is cloned of the main network every fixed

number timesteps. However, in case of the SAC algorithm, the target network is updated once per

main network update by using polyak averaging:

 𝜃𝑡𝑎𝑟𝑔 = 𝜌𝜃𝑡𝑎𝑟𝑔 + (1 − 𝜌)𝜃, (35)

where 𝜌 is a hyperparameter between 0 and 1. [1] [21] [22]

4.3. Clipped Double Q-learning

The disadvantage of deep Q-learning is overestimation bias that is caused by maximization of a

noisy value estimate. At the beginning of learning, the action-value function 𝑄𝜋 is not the optimal

action-value function 𝑄∗. Therefore the 𝑄𝜋 function is not precise, with the result that noisy

estimates are unavoidable. An imprecise estimate within each update accumulates the error that

causes bad states to be considered as good states. Consequently, the policy update is not done in

the best possible way, which results in worse learning performance. The problem of overestimation

bias also persists in an actor-critic setting. Therefore, the Twin Delayed Deep Deterministic policy

gradient algorithm (TD3) has presented the solution to use two separate action-value functions,

with the intention of having two independent estimates that can be used to make unbiased

estimate. However, the critics in this form are not entirely independent and it can happen that in

certain areas of the state space an action-value can be overestimated. This can be solved by clipping

the values estimates in terms of taking the minimum between the two action-values. This is called

the Clipped Double Q-learning algorithm. [19]

These two action-value approximators are updated using a mean-squared Bellman error

(MSBE) function. The Bellman equation describing the optimal action-value function 𝑄∗(𝑠, 𝑎) is a

starting point for updating the two action-value approximators. Suppose the approximators are

neural networks 𝑄𝜙1, 𝑄𝜙2 and there is an experience buffer D with transitions (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑑𝑡),

FEI KEM

30

where 𝑑𝑡 indicates whether the state 𝑠𝑡+1 is the terminal state or not. The MSBE function, which

expresses how close an action-value approximator is to satisfy the Bellman equation for the optimal

action-value function, is defined as follows: [1] [19]

𝐿(𝜙1, 𝐷) = 𝐸(𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1,𝑑𝑡)∈𝐷 [(𝑄𝜙1(𝑠𝑡, 𝑎𝑡) − (𝑟𝑡 + 𝛾(1 − 𝑑𝑡) max
𝑎𝑡+1

𝑄𝜙1(𝑠𝑡+1, 𝑎𝑡+1)))

2

] (36)

𝐿(𝜙2, 𝐷) = 𝐸(𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1,𝑑𝑡)∈𝐷 [(𝑄𝜙2(𝑠𝑡, 𝑎𝑡) − (𝑟𝑡 + 𝛾(1 − 𝑑𝑡) max
𝑎𝑡+1

𝑄𝜙2(𝑠𝑡+1, 𝑎𝑡+1)))

2

] (37)

4.4. SAC Algorithm

The implementation within this master thesis uses a state-value approximator 𝑉𝜓 and its target

network 𝑉𝜓𝑡𝑎𝑟𝑔
. The objective for the action-value approximators can be modified by using the

target state-value approximator:

𝐿(𝜙𝑖, 𝐷) = 𝐸(𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1,𝑑𝑡)∈𝐷 [(𝑄𝜙𝑖(𝑠𝑡 , 𝑎𝑡) − (𝑟𝑡 + 𝛾(1 − 𝑑𝑡)𝑉𝜓𝑡𝑎𝑟𝑔
(𝑠𝑡+1)))

2

], (38)

where i = 1, 2. The target state-value network 𝑉𝜓𝑡𝑎𝑟𝑔
 is obtained by polyak averaging the state-value

network parameters over the course of training:

 𝜓𝑡𝑎𝑟𝑔 = 𝜌𝜓𝑡𝑎𝑟𝑔 + (1 − 𝜌)𝜓, (39)

whereas the learning rule for the state-value network 𝑉𝜓 comes out of the equation of a soft state-

value function.

𝑉𝜋(𝑠) = 𝐸[𝑄𝜋(𝑠, 𝑎) + 𝛼𝐻(𝜋(. |𝑠))]

≈ 𝑄𝜋(𝑠, 𝑎̃) − 𝛼 log 𝜋(𝑎̃(𝑠)|𝑠),
(40)

where 𝑎̃~𝜋(. |𝑠). The loss function for the state-value function is minimized using a mean-squared

error based on the approximation defined in the previous equation. Since the implementation of

SAC uses two action-value functions, the same concept of the Clipped Double Q-learning algorithm

is used. Therefore, the loss function takes the minimum Q-value between the two approximators.

 𝐿(𝜓, 𝐵) = 𝐸 𝑠∈𝐷
𝑎̃~𝜋𝜃

[(𝑉𝜓(𝑠) − (min
𝑖=1,2

𝑄𝜙𝑖 (𝑠, 𝑎̃) − 𝛼 log 𝜋𝜃(𝑎̃|𝑠)))

2

] (41)

It is important to realize that in terms of updating the state-value function, actions from the

experience buffer are not used. Actions 𝑎̃ are sampled fresh from the current version of the policy

based on given states from the experience buffer.

FEI KEM

31

The last step of SAC is to update the policy network. Optimizing the policy requires the

reparameterization trick, in which an action 𝑎̃ is drawn by computing a deterministic function.

Instead of using a Gaussian policy from the second chapter, it is used a Squashed Gaussian policy.

The difference is that the original form of a Gaussian policy is within the hyperbolic tangent

function. This ensures that actions are in finite range <-1; 1>. [1] [10]

 𝑎̃(𝑠, 𝑧) = tanh(𝜇𝜃(𝑠) + 𝜎𝜃(𝑠) ⊙ z) (42)

In terms of SAC the goal of the policy is to maximize the expected future return, as it is the

standard RL objective, but also expected future entropy. From this statement, it can be concluded

that the objective of SAC is to maximize the soft state-value function 𝑉𝜋(𝑠). Therefore, the

objective can be defined as follows:

 max
𝜃

𝐸𝑠∈𝐷
𝑧~𝑁

[min
𝑖=1,2

𝑄𝜙𝑖 (𝑠, 𝑎̃𝜃(𝑠, 𝑧)) − 𝛼 log 𝜋𝜃(𝑎̃𝜃(𝑠, 𝑧)|𝑠)] (43)

As a result of maximizing trade-off between of reward and entropy, entropy must be unique to

state. Therefore, instead of using the constant standard deviation 𝜎𝜃, the standard deviation is

output from a neural network. However, it has to be bounded to a certain interval, because at the

beginning of the training, the neural network can output large values, which can break the learning.

[1] [10]

Fig. 8 Comparison of training curves of different algorithms with SAC (yellow) on continuous

control benchmarks [10]

FEI KEM

32

4.4.1. Automating Entropy Adjustment

The downside of using SAC is its brittleness to the temperature parameter α. In maximum

entropy RL scaling of reward function has negative effect and it has to be compensated by the

suitable temperature parameter α. However, the temperature parameter is another

hyperparameter that is chosen by a programmer and its wrong value can drastically degrade

learning performance. The suitable value of the temperature parameter depends on a given task

and environment. Moreover, the high value of the temperature parameter 𝛼 → 1 forces an agent

to explore more, whereas 𝛼 → 0 corresponds to more exploitation. At the beginning of the training

it is preferable, or better said required, to explore the action and state space more but as the agent

is getting better, exploration should be less supported. As a consequence, the author of SAC has

extended the original algorithm with a constrained formulation that automatically tunes the

temperature parameter. This modification accelerates the learning and most importantly provides

better stability of learning performance. [23]

The temperature parameter α can be updated using gradient of the following objective

function:

 𝐽(𝛼) = 𝐸[−𝛼𝑡 log 𝜋𝜃𝑡
(𝑎𝑡|𝑠𝑡; 𝛼𝑡) − 𝛼𝑡𝐻̅], (44)

where 𝐻̅ is desired minimum expected entropy. The update of the temperature parameter is

performed each gradient step. In the following figure there is shown the comparison of using the

constant value of the temperature hyperparameter with using the adjustable one. The experiments

were performed on the robotic push task with binary sparse rewards. [23]

Fig. 9 Comparison of using different approaches within temperature parameter α

(Left: constant α, Right: automatically tuned α)

FEI KEM

33

Tab. 4 Pseudocode of SAC [1]

1: Input: initial policy parameters 𝜃, Q-function parameters 𝜙1, 𝜙2, V-function parameters ψ,

empty replay buffer D

2: Set targets parameters equal to main parameters 𝜓𝑡𝑎𝑟𝑔 ← 𝜓

3: repeat

4: Observe state s and select action 𝛼~𝜋𝜃(. |𝑠)

5: Execute α in the environment

6: Observe next state s’, reward r and done signal to indicate whether s’ is terminal

7: Store (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑) in replay buffer D

8: If s’ is terminal, reset environment state

9: if it is time to update then

10: for j in range(however many updates) do

11: Randomly sample a batch of transitions, 𝐵 = {(𝑠, 𝑎, 𝑟, 𝑠′, 𝑑)} from D

12:

Compute targets for Q and V functions:

𝑦𝑞(𝑟, 𝑠′, 𝑑) = 𝑟 + 𝛾(1 − 𝑑)𝑉𝜓𝑡𝑎𝑟𝑔
(𝑠′)

𝑦𝑣(𝑠) = min
𝑖=1,2

𝑄𝜙𝑖
(𝑠, 𝑎̃) − 𝛼 log 𝜋𝜃(𝑎̃|𝑠), 𝑎̃~𝜋𝜃(. |𝑠)

13:

Update Q-functions by one step of gradient descent using

∇𝜙𝑖

1

|𝐵|
∑ (𝑄𝜙,𝑖(𝑠, 𝑎) − 𝑦𝑞(𝑟, 𝑠′, 𝑑))

2
 for 𝑖 = 1,2

(𝑠,𝑎,𝑟,𝑠′,𝑑)∈𝐵

14:

Update V-function by one step of gradient descent using

∇𝜓

1

|𝐵|
∑ (𝑉𝜓(𝑠) − 𝑦𝑣(𝑠))

2

𝑠∈𝐵

15:

Adjust temperature parameter α with learning rate λ using

𝛼 ← 𝛼 − 𝜆∇𝛼𝐽(𝛼)

16:

Update policy by one step of gradient descent using

∇𝜃

1

|𝐵|
∑ (𝑄𝜙,1(𝑠, 𝑎̃𝜃(𝑠)) − 𝛼 log 𝜋𝜃 (𝑎̃𝜃(𝑠)|𝑠)) ,

𝑠∈𝐵

where 𝑎̃𝜃(𝑠) is a sample from 𝜋𝜃(. |𝑠) that is differentiable with 𝜃 via the

reparametrization trick

17:

Update target value network with

𝜓𝑡𝑎𝑟𝑔 ← 𝜌𝜓𝑡𝑎𝑟𝑔 + (1 − 𝜌)𝜓

18: end for

19: end if

20: until convergence

FEI KEM

34

5. Implementation of RL Within ROS

5.1. ROS

The essence of the Robot Operating System (ROS) consists of a collection of tools, libraries and

drivers that makes the development of robotic applications faster. The main advantage is its open-

source ideology that has created the international community of robot researchers and engineers

all around the world. This results in even faster progress in the field of robotics. Last years, ROS has

also found its utilization within industrial applications and has become the most used platform

for robotic development. Therefore, it is a logical choice to use ROS with regard to testing SAC+HER

within robotics. For investigating the SAC+HER algorithms, in this thesis it was decided to employ a

KUKA Agilus KR 6 R900 CR robot that is fully supported within ROS in terms of drivers and models.

The PC with ROS Melodic represents the main control system for controlling the robotic arm.

The PC receives the actual state of the joints of the robot from the KUKA KR C4 Compact controller.

The PC interprets those signals and sends accordingly desired goals for each joint of the robot to

the KR C4 controller. Data between the PC and the KR C4 controller are transmitted via the TCP/IP

protocol and the minimum cycle time takes 2 ms, depending on the data volume and the

programming method.

Fig. 10 System Overview

5.2. KUKA Agilus

KUKA Agilus is a compact 6DoF and approximately 52 kg weighing small robot designed for high

working speeds. Its possibilities of installation to different positions allow a wide range of

applications. The maximum reach of Agilus KR 6 R900 CR is 901.5 mm with a rated payload of 3 kg.

FEI KEM

35

The maximum payload is 6 kg, although in this case the dynamic performance of the robot is not

optimized. [24]

Tab. 5 Axis data [24]

Joint Motion range [°] Minimum [°] Maximum [°]

A1 340 -170 170

A2 235 -190 45

A3 276 -120 156

A4 370 -185 185

A5 240 -120 120

A6 700 -350 350

Fig. 11 Workspace graphic [24]

At the end of the joint A6 there is a gripper SMC MHS3-40D, which is a three-finger parallel

style pneumatic gripper. The three-finger design enables applications that require gripping small

round objects. Even though this thesis does not deal with gripping, it is necessarily to consider its

presence within kinematics and motion control. However, this gripper is replaced in the KUKA Push

task, because its shape caused throwing a block away from the robot workspace. Therefore, the

simple model of cuboid is used that functions as a one finger-type gripper. This exchange solved

the problem with undesirable movement of the block.

FEI KEM

36

5.2.1. Robot Model

In order to be able to use the ROS capabilities, especially kinematics and motion planning

libraries, it is necessarily to create a precise model of the robotic arm. Fortunately, the models of

almost all KUKA robots have already been created and are available as a part of the ROS-Industrial

project. So in the URDF model of the robot there had to be added the aforementioned gripper. The

easiest and most reliable procedure was to find a STL file at the manufacturer’s website.

Consequently, physics properties (such as inertia, position limits, maximum joint effort, …) had to

be appended to the URDF file. To be able to use the Gazebo simulator, it was necessarily to also

add the Gazebo plugin and to specify a transmission for every non-fixed joint so Gazebo would

know what to do with a joint. After these steps the model was prepared for being compatible with

MoveIt and could be successfully shown in Rviz and Gazebo as follows:

Fig. 12 KUKA Agilus model

5.2.2. Robot Kinematics

ROS provides an easy-to-use platform called MoveIt for developing robotic manipulation

applications that is capable to solve forward and inverse kinematics (IK) as well as to plan

trajectories. Furthermore, it is compatible with other features of ROS. The default option for the IK

solver is the OROCOS Kinematics and Dynamics Library solver (KDL) that use numerical IK approach:

using the Newton method or similar to iterate until the solution is found. However, the KDL solver

suffers from the following issues: [14]

1) frequent convergence failures for robots with joint limits

2) no actions taken when the search becomes “stuck” in local minima

FEI KEM

37

3) problem handling tolerances for Cartesian pose and the IK solver itself

 With regard to the thesis, this downside had extremely negative impact on learning process.

With the usage SAC+HER, the policy learnt to output values to which KDL could not find a solution.

Therefore, there was an effort to find a better solver that would achieve required behaviour. The

solver that satisfies all the requirements is the TRACK-IK solver developed by TRACLabs. The TRACK-

IK solver uses a simple extension of the original KDL solver that mitigates the problem with local

minima. In additional, the TRACK-IK solver concurrently computes the second IK implementation,

which uses quasi-Newton methods that handle joint limits better. By default setting, the TRACK-IK

solver provides the faster solution computed by one of these methods. In case of being stuck, the

solver automatically restarts itself unlike the KDL solver. From the practical view, the TRACK-IK has

better performance in terms of success in finding solutions but also in terms of required time for

finding a solution. In the following table it is shown the comparison of KDL and TRACK-IK using

different types of robotic manipulators. [14]

Tab. 6 Comparison of KDL and TRACK-IK [14]

Manipulator DoFs KDL solve rate KDL avg. time
TRACK-IK

solve rate

TRACK-IK

avg. time

ABB IRB120 6 39,41 % 3,08 ms 99,96 % 0,24 ms

Baxter arm 7 61,43 % 2,15 ms 99,83 % 0,37 ms

Fetch arm 7 93,28 % 0,65 ms 99,98 % 0,24 ms

PR2 arm 7 84,70 % 1,26 ms 99,96 % 0,31 ms

UR5 6 16,52 % 4,21 ms 99,17 % 0,37 ms

UR10 6 14,90 % 4,29 ms 99,33 % 0,36 ms

5.3. Basic Motion Control Architecture

To ensure that the position of each joint is correct during the whole trajectory execution, the

ros_control package is used. The ros_cotrol package provides real-time robot controllers that take

an actual and desired state of a joint and control the output sent to an actuator by means of a

generic control loop feedback mechanism (usually PID). The output can be in form of effort, velocity

or position depending on the used controller. The ros_control package also provides the high-level

controller called Joint Trajectory Controller. MoveIt generates a trajectory, which is basically a set

of waypoints consisting of positions, velocities and efforts for joints. Consequently, the role of Joint

Trajectory Controller is to ensure that these waypoints are executed at specific time instants.

FEI KEM

38

With regard to the thesis, Joint Trajectory Controller is set to output only desired positions for

each joint to the KUKA controller. The superior control system determines the [X, Y, Z] coordinates

of an end-effector together with its orientation described by the quaternion [x, y, z, w] and inputs

them to the TRACK-IK solver thereafter. The solver computes a set of position waypoints in order

to achieve the desired [X, Y, Z, x, y, z, w] coordinates and consequently these waypoints are passed

to Joint Trajectory Controller (Fig. 13). [3]

Fig. 13 Motion control architecture

The standard simplest approach consisting of using basic MoveIt API does provide functions that

support setting joint goals, setting end-effector goals, creating motion plans etc. However, these

functions have two major disadvantages:

1) The robot has to finish one trajectory before starting the new one, which results in the

undesirable movement. As the robot is finishing the first trajectory, the movement of the

robot is decelerating. At the beginning of the second trajectory the robot is accelerating

from the zero speed and in the end of the trajectory it is decelerating again.

2) The second approach is to plan a trajectory before its execution. However, within this thesis

the policy does not function as a predictor of trajectory but as the real-time controller that

is capable of adapting to new situations.

FEI KEM

39

The strategy from the Fig 13. has been employed because of the reason that it allows to change the

trajectory smoothly during its execution without any impact on the robot’s movement. The other

advantage is that the program does not wait until the robot achieves goal position, thanks to which

other computations can be done in the meantime.

5.4. KUKA Reach

For the purpose of testing SAC+HER combination, the “KUKA Reach” task has been created,

which consists of controlling KUKA’s end-effector to reach the random goal position within the

predefined robot workspace. Even though this task does not need to be solved using RL methods,

it provides possibilities to learn how to build a custom environment and to verify SAC+HER. Creating

this challenge was inspired by OpenAI’s FetchReach environment that has been created using

MuJoCo physics engine. The initial pose of the robotic arm is constant, whereas the goal position is

randomly chosen.

5.4.1. Reward Function

As it was already mentioned in the previous chapters, using dense rewards is not convenient

due to difficulties within designing a suitable reward function. As a result, KUKA Reach environment

use the following reward function:

 𝑅(𝑔𝑎𝑐ℎ, 𝑔𝑑𝑒𝑠) = {
0

−1

if |𝑔𝑎𝑐ℎ − 𝑔𝑑𝑒𝑠| < 𝜀
otherwise

, (45)

where 𝑔𝑎𝑐ℎ denotes the achieved goal, 𝑔𝑑𝑒𝑠 is the desired goal and 𝜀 represents tolerance. The

agent aims to reach a desired goal that is specified by [𝑋, 𝑌, 𝑍] coordinates within the Cartesian

coordinate system. After each timestep the reward function compares the achieved goal with the

desired goal using subtraction and thereafter compares the absolute value of the difference with

the tolerance. Within this task the tolerance is set to 5 mm.

5.4.2. States

A state of a robotic environment is always partially observable and therefore it was necessary

to choose properties, which provide sufficient information about the environment, but also their

amount would not slow down learning process. After careful consideration the state consists of

these ten properties:

1) The pose of the end-effector with respect to the world frame

- given in 3 positional elements [𝑋, 𝑌, 𝑍]

- given in 4 rotational elements [𝑥, 𝑦, 𝑧, 𝑤] (a quaternion)

2) The position of the gripper with respect to the goal position

- given in 3 positional elements [𝑋, 𝑌, 𝑍]

FEI KEM

40

Another advantage of using ROS and MoveIt is that it is easy to get the aforementioned information

without slowing down computational power. The pose of the end-effector is provided by MoveIt,

whereas the position of the gripper with respect to the goal position is provided by subtracting the

position of the gripper from the goal position.

5.4.3. Actions

The policy outputs three continuous actions representing [𝑋, 𝑌, 𝑍] position coordinates. Each

action value is from bounded interval ⟨−1,0; 1,0⟩. After choosing actions, these action values are

converted thereafter into the valid values of the robot workspace. It was necessarily to define the

cuboid robot workspace, in which the robotic arm would be capable to reach any point within the

workspace. The range of the coordinates has been chosen as follows:

𝑋𝑎𝑥𝑖𝑠 ∈ ⟨0,47 𝑚; 0,765 𝑚⟩

𝑌𝑎𝑥𝑖𝑠 ∈ ⟨−0,35 𝑚; 0,35 𝑚⟩

𝑍𝑎𝑥𝑖𝑠 ∈ ⟨0,1 𝑚; 0,6 𝑚⟩

(46)

The outputs [𝑋𝜋, 𝑌𝜋 , 𝑍𝜋] from the policy 𝜋 are converted into the physical coordinates

[𝑋𝑔𝑟𝑖𝑝𝑝𝑒𝑟 , 𝑌𝑔𝑟𝑖𝑝𝑝𝑒𝑟 , 𝑍𝑔𝑟𝑖𝑝𝑝𝑒𝑟] using following equations:

𝑋𝑔𝑟𝑖𝑝𝑝𝑒𝑟 = (0,1475. 𝑋𝜋 + 0,1475) + 0,47

𝑌𝑔𝑟𝑖𝑝𝑝𝑒𝑟 = (0,35. 𝑌𝜋 + 0,35) − 0,35

𝑍𝑔𝑟𝑖𝑝𝑝𝑒𝑟 = (0,25. 𝑍𝜋 + 0,25) + 0,1

(47)

5.4.4. ROS Mechanism

The best practice within designing a RL system is to divide the whole system into two parts:

agent and environment. Fortunately, the architecture of ROS is based on distributed computing,

where the whole system consists of small programs that communicate with one another. Despite

the faster speed of the whole system, even though one of the programs dies, the other programs

continue running. In terms of creating the RL system this advantage comes in handy.

The agent and environment are two separate ROS nodes that communicate together through

ROS Services. Services are two-way communications that are based on request/reply interaction.

One node, the client, sends a request to the second node, the server. The program in the first node

waits for the response from the server. The agent fulfils the role of the client, whereas the

environment functions as the server. No matter how long the server/environment is working on

the response, the client/agent is blocked until the response comes. In other words, the

environment indicates the size of one timestep.

FEI KEM

41

The standard approach for creating a RL environment consists of two main functions. The first

function should somehow reset the environment that is necessarily to call before each episode. Its

purpose is to prepare the environment for new episode: define new goal, reset all variables, set a

robot into an initial pose, etc. The second “step” function should take an action and return a new

state of the environment, rewards and other useful information. Regarding the thesis, the content

of the request message, which the client sends to the server, defines which action should be called.

The custom request message has the following structure:

1) action – the vector of three elements representing [𝑋𝜋, 𝑌𝜋 , 𝑍𝜋]

2) reset – the flag that differs between the reset function and the step function

and the response message looks as follows:

1) state – the vector of ten elements representing a state of the environment

2) desired goal – the vector of three elements given in the positional coordinates

3) achieved goal – the vector of three elements given in the positional coordinates

4) reward – the scalar value

5) done – the flag representing the terminal state

At the beginning the agent sends a request with the reset flag set to 1. As a result, the

environment ignores the received actions and prepares itself for new episode. After setting the

robot into the initial pose, it creates the new desired goal and consequently it responds with the

current state, … etc (the response message) to the agent. Based on the response message,

especially based on the state and the desired goal, the agent takes an action and the episode has

officially started. By taking the action, the new request is sent to the environment but with the reset

flag set to 0. The environment knows that it should be the step function and therefore it converts

action to the physical coordinates (Eq. 47). The fixed orientation of the gripper and the desired

[𝑋𝑔𝑟𝑖𝑝𝑝𝑒𝑟 , 𝑌𝑔𝑟𝑖𝑝𝑝𝑒𝑟 , 𝑍𝑔𝑟𝑖𝑝𝑝𝑒𝑟] coordinates are assigned to the TRACK-IK solver in order to compute

a set of position waypoints (Fig. 13) that are applied to the robot for the time of 30 ms. Since the

action needs certain time to have an impact, the new state of the environment is recorded after

those 30 ms and consequently sent back with other information to the agent.

The new desired goal is randomly generated in the robot workspace after calling the reset

function. After that its coordinates are broadcasted to the tf2 library with the intention of knowing

transforms between the goal and other frames. For the purpose of visualising the goal’s

coordinates, they are also published to RViz and Gazebo. In terms of Gazebo the goal is represented

by an object without collision setting so it could not interact with other objects, such as the robot.

However, in order to be able to set the position of the object, it is necessarily to create a custom

FEI KEM

42

Gazebo plugin for the object that subscribes the goal’s coordinates topic. In terms of RViz the goal

is visualized using a simple marker. In addition, for better overview the custom RViz plugin has been

created so it would be easier to follow the learning process.

The simulation within Gazebo behaves almost as the real hardware in terms of using the same

high-level controllers and having almost precise physical properties. Moreover, Gazebo allows to

speed up the simulation time by multiplying the real time factor. Luckily, Gazebo is strongly tied

with ROS which results in inheriting the simulation time by other ROS nodes. In practice it means

that even though there is waiting period of 30 ms, it is scaled by the real time factor. With respect

to the thesis and the Reach task, this feature accelerated the learning process 8 times. The

maximum real time factor varies hugely, depending on the computing power.

Fig. 14 KUKA Reach environment

FEI KEM

43

Fig. 15 Detailed learning performance of SAC+HER in KUKA Reach environment

Fig. 16 Long-term learning performance of SAC+HER in KUKA Reach environment

FEI KEM

44

5.5. KUKA Push

The second real world robotic task involves training the KUKA robot to push a block towards

the goal position, which is randomly chosen within the predefined robot workspace. Extending the

original KUKA Reach task with the block brings more challenges within RL but also within ROS

capabilities. In order to detect the pose of the object, the Kinect One sensor has been added to the

robot system. The Kinect sensor sends RGB images to the PC via USB 3.0 connection with the frame

rate up to 30 FPS. Based on these RGB images and ArUco markers technology the PC is capable to

locate the object. In this section the requirements for creating the KUKA Push environment and

testing the agent are described.

Fig. 17 System overview extended with Kinect One sensor

5.5.1. Kinect v2 Sensor

 The Kinect One sensor is a motion sensing input device produced by Microsoft. Even though it

did not appeal a gamming community, it has been found applications within amateur robotics.

Kinect is equipped with a colour camera and a depth sensor including IR camera and IR projector,

and therefore it is referred to as a RGB-D camera. Combination of the inputs from those sensors

can produce pointclouds that create a representation of a 3D object with densely placed points

along its surface.

Fig. 18 Technical specifications of Kinect v2

FEI KEM

45

Fig. 19 Kinect v2 description

5.5.1.1. Camera Calibration

The fact that Kinect is not used for robotic applications and is made from cheap pinhole cameras

results in significant distortion. This distortion causes that images do not correspond to the real

world in terms of the relation between pixels and the real-world units e.g. millimetres. Additionally,

even though objects are not moving, their detected coordinates are not stable. Luckily, a calibration

can solve the distortion by finding appropriate coefficients within correction equations. The

calibration is executed using various types of patterns, mostly a black-white chessboard pattern

that was also used in this thesis. Basically, it is necessarily to take photos of the pattern with

different orientations of the pattern and different distances between Kinect and the pattern. After

taking many photos, the calibration program determines the essential correction coefficients.

Fig. 20 Camera calibration

FEI KEM

46

5.5.1.2. Hand-Eye Calibration

Despite having the successfully calibrated camera the program would still detect coordinates

of an object with respect to the camera. Therefore, there are two crucial parts to do. Firstly, the

precise position of the camera must be known relative to the robot’s base. Even small error within

this step will cause inaccuracy and the robot will not be able to interact with objects because of the

wrong position estimates. The second important part is to transform the coordinates, which are

originally relative to the camera, with respect to the robot’s base. Fortunately, the tf2 library can

take care of the second part.

The solution for the determining the camera coordinates is based on the publication by R. Tsai

from 1989 and ArUco markers. Tsai’s hand-eye calibration can be done for two configurations. The

first configuration is called “eye-on-hand”, in which case the camera is mounted on the robot’s end-

effector and the reference frame (marker) is on a table. However, this configuration is not suitable

for the KUKA Push application because in case that the object would be far from the end-effector,

the camera would not be able to see the object. The second configuration is called “eye-on-base”,

in which case the camera is standing on a tripod next to the robot and the reference frame (marker)

is mounted on the robot’s end-effector. With the predefined size and type of an ArUco marker the

detection program can determine its position and orientation even only from RGB images. The pose

of the end-effector is known thanks to MoveIt and so the real pose of the reference frame is known

too. Thereafter, using the “easy_handeye” package the arm is moving into random poses, each time

a different rotation and position, and in each pose the actual pose of the reference marker is

compared with the output from the detection program. This package takes care of determining the

pose of the camera with respect to the base of the robot as well as of all necessary steps needed

for the calibration.

Fig. 21 Eye-on-base calibration of Kinect

FEI KEM

47

5.5.1. Reward Function

The reward function for the KUKA Push task is almost the same as it is in the previous task. The

difference is that the desired goal is a goal position 𝑔𝑑𝑒𝑠 of a block and the achieved goal 𝑔𝑎𝑐ℎ is an

actual position of the block. The tolerance 𝜖 is set to 1 cm (Equation 45). In this task the aim for the

robot is to push a block towards a goal position using its end-effector. The goal position of the block

and the initial block position are randomly chosen on the table surface within the robot workspace.

5.5.2. States and Actions

The state space within this task is 26-dimensional. The properties of the state represent the

following features:

1) The pose of the end-effector relative to the world frame

- given in 3 positional elements [𝑋, 𝑌, 𝑍]

- given in 4 rotational elements [𝑥, 𝑦, 𝑧, 𝑤]

2) The pose of the block relative to the world frame

- given in 3 positional elements [𝑋, 𝑌, 𝑍]

- given in 4 rotational elements [𝑥, 𝑦, 𝑧, 𝑤]

3) The position of the block relative to the end-effector

- given in 3 positional elements [𝑋, 𝑌, 𝑍]

4) The linear velocity of the block

- given in 3 linear velocity elements [𝑣𝑥, 𝑣𝑦 , 𝑣𝑧]

5) The angular velocity of the block

- given in 3 angular velocity elements [𝑤𝑥, 𝑤𝑦, 𝑤𝑧]

6) The linear velocity of the end-effector

- given in 3 linear velocity elements [𝑣𝑥, 𝑣𝑦 , 𝑣𝑧]

The pose of the end-effector is obtained using MoveIt and its linear velocities are computed by

means of the actual and previous position of the end-effector. The access to features of the block

depends on the fact if the Gazebo simulator or the real physical robot is used. In case of using

Gazebo, the pose and velocities are defined by the custom plugin that was created for the purposes

of publishing the properties of the object. The publishing rate is 1000 Hz, whereas the sampling

time needed for computing velocities is 40 ms (the sampling rate is 25 Hz). This sampling time is

defined by the size of the timestep within RL interactions. In case of using the real physical robot,

the object pose is determined by the Kinect sensor and an ArUco marker. Velocities are computed

in the same way like the linear velocities of the end-effector, which means by using the actual and

FEI KEM

48

previous poses of the object. The sampling time and the RL timestep are defined by time needed

for Kinect and the object recognition program to detect an object pose.

Actions from the policy specify target [𝑋, 𝑌, 𝑍] coordinates of the end-effector, which are

published to Joint Trajectory Controller. All actions are in the interval 〈−1.0; 1.0〉 and after choosing

an action they are consequently converted into the valid values within the robot workspace.

Coordinates within the robot workspace are bounded as follows:

𝑋𝑎𝑥𝑖𝑠 ∈ ⟨0,6 𝑚; 0,98 𝑚⟩

𝑌𝑎𝑥𝑖𝑠 ∈ ⟨−0,34 𝑚; 0,34 𝑚⟩

𝑍𝑎𝑥𝑖𝑠 ∈ ⟨0,43 𝑚; 0,63 𝑚⟩

(48)

5.5.3. ROS Mechanism

The core of the program for the KUKA Push task is essentially the same as the one for KUKA

Reach. In other words, the KUKA Push task can be considered as the extension of KUKA Reach. The

main difference is that the block (a cube 4x4 cm) is added (Fig. 21). The training phase is done in

Gazebo and therefore it was necessary to develop the custom plugin for it. The plugin functions as

a publisher and a service server as well. The publisher is responsible for reading and sending object

pose and velocities each 1 ms, whereas the service server responds to the environment request for

resetting the object position. The object position is randomly chosen after calling the reset function

within the environment. The rest of the system remains the same as it is in case of KUKA Reach,

except the fact that the state vector in the agent’s request has 26 elements. The following figure

shows the overview of the ROS mechanism.

Fig. 22 Overview of ROS mechanism for KUKA Push

FEI KEM

49

Fig. 23 KUKA Push environment

Fig. 24 Learning performance of SAC+HER in KUKA Push environment

FEI KEM

50

Conclusion

The aim of this thesis was to verify the Soft Actor-Critic and Hindsight Experience Replay

algorithms in the custom created environments within ROS. The prerequisite for accomplishing this

challenge was to understand the basics of reinforcement learning, moreover, the SAC and HER

algorithms in order to be capable of implementing them within ROS. The combination was tested

using OpenAI Gym environments [25] and modified until the learning performance was satisfying.

These tests showed that using automating entropy adjustment significantly improves the learning

performance in terms of speed and convergence stability.

The next phase was to create the robotic environment KUKA Reach. Since this task is relatively

simple to solve, its development provided more space for considering different approaches how to

solve inverse kinematics, motion planning, etc. For the purposes of this thesis using Joint Trajectory

Controller from ros_control package and the TRACK-IK solver was the best way to go. Basically, the

agent determines [𝑋, 𝑌, 𝑍] coordinates of the end-effector and MoveIt with ros_control takes care

of the waypoints between the current position and agent’s request. The best advantage of using

this approach is that the agent is able to change the trajectory smoothly without any negative

impact on the robot movement. The KUKA Reach environment provides solid foundation for

creating other robotic environments within ROS. However, the KUKA Reach task does not need RL

in order to be solved and therefore the KUKA Push environment has been developed. Because the

environment is more complex task, it brought more complications. The first main problem was in

using the original tf library for detecting the pose of the object. The tf library had sometimes

problem to get the current state of the object, which resulted in killing the learning program. This

problem was solved by using the tf2 library that is a newer version, although in the final version of

program the tf2 library was replaced by publisher/subscriber. The second issue concerned the

shape of the gripper. The cylindrical gripper caused that the object was thrown away from the robot

workspace each time the gripper hit some edge of the object. Changing the original cylindrical

gripper with the cuboid gripper representing a finger has resolved this issue. Choosing the right

features, which input to the policy, was also problematic and it is necessary to realize what the

agent really needs to know in order to solve a task. Regarding the thesis, velocities of the object

and the gripper were crucial conditions for accomplishing the KUKA Push task. The final main

problem was to define the robot workspace and initial positions of the object and a goal position.

The agent could not learn if the space of initial positions was too large.

The simulation results of the KUKA Push task prove that the combination of SAC+HER has state-

of-the-art performance within robotic environments. Unfortunately, there was not enough time for

FEI KEM

51

testing the trained agents on the real aforementioned hardware so the next logical step should be

verifying the agents in the real world. Besides that, the future work could have two options. The

first option would be to use this combination for solving more difficult robotic environments using

ROS, such as handling of compliant food objects, or trying to achieve even better performance by

using LSTM neural networks. The other option would be to work on new types of algorithms and

test it on the environments that have been created within the thesis. The algorithm that seems to

be particular interesting is the Monte Carlo Tree Search algorithm for continuous action and state

space. This approach is still new and requires a lot of work, but it would be interesting to see how

well it performs within robotics. Anyway, the created open-source environments could hopefully

enable ROS community to test different RL algorithms or motivate its members to create other

environments.

FEI KEM

52

Bibliography

[1]. Achiam, Josh and Abbeel, Pieter. OpenAI Spinning Up. [Online] OpenAI, 2018. [Cited 1.

December 2019.] https://spinningup.openai.com/en/latest/index.html.

[2]. DARPA Robotics Challenge. [Online] DARPA. [Cited: 16. 4. 2020.]

https://www.darpa.mil/program/darpa-robotics-challenge.

[3]. Ďurovský, František. DARPA - Robotics Challenge 2015. Smart Robotic Systems. [Online] 12.

September 2015. [Cited: 16. April 2020.] http://www.smartroboticsys.eu/?p=1986.

[4]. Levine, Sergey. Deep Robotic Learning. [Online] 7. April 2017. [Cited: 16. April 2020.]

https://youtu.be/eKaYnXQUb2g.

[5]. Kober, Jens, Bagnell, J. Andrew and Peters, Jan. Reinforcement learning in robotics: A

survey. 11, s.l. : The International Journal of Robotics Research, 2013, Vol. 32.

[6]. Grondman, Ivo. Online Model Learning Algorithms for Actor-Critic Control. 2015. ISBN 978-

94-6186-432-1.

[7]. Sutton, Richard S., Barto, Andrew G. Reinforcement Learning: An Introduction. s.l. : The MIT

Press, 1998. ISBN 0-262-19398-1.

[8]. Silver, David. Introduction to reinforcement learning. [Online] DeepMind, 13. May 2015.

[Cited: 16. April 2020.] https://youtu.be/2pWv7GOvuf0?list=PLqYmG7hTraZDM-

OYHWgPebj2MfCFzFObQ.

[9]. Henderson, Peter et al. Deep Reinforcement Learning that Matters. New Orleans : The

Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[10]. Haarnoja, Tuomas et al.. Soft Actor-Critic: Off-Policy Maximum Entropy Deep

Reinforcement Learning with a Stochastic Actor. arXiv preprint, 2018. arXiv:1801.01290.

[11]. Simonini, Thomas. Deep Reinforcement Learning Course. [Online] 2018. [Cited: 16. April

2020.] https://simoninithomas.github.io/Deep_reinforcement_learning_Course/.

[12]. Haarnoja, Tuomas et al. Reinforcement Learning with Deep Energy-Based Policies. s.l. :

arXiv preprint, 2017. arXiv:1702.08165.

[13]. Géron, Aurélien. A Short Introduction to Entropy, Cross-Entropy and KL-Divergence.

[Online] 2. February 2018. [Cited: 16. April 2020.] https://youtu.be/ErfnhcEV1O8.

[14]. Beeson, Patrick a Barrett, Ames. TRAC-IK: An Open-Source Library for Improved Solving of

Generic Inverse Kinematics. Seoul : IEEE RAS Humanoids Conference, 2015.

[15]. Jiao, Jichao et al. A Post-Rectification Approach of Depth Images of Kinect v2 for 3D

Reconstruction of Indoor Scenes. 11, s.l. : International Journal of Geo-Information, 2017,

Vol. 6.

https://spinningup.openai.com/en/latest/index.html
https://www.darpa.mil/program/darpa-robotics-challenge
http://www.smartroboticsys.eu/?p=1986
https://youtu.be/eKaYnXQUb2g
https://youtu.be/2pWv7GOvuf0?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ
https://youtu.be/2pWv7GOvuf0?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ
https://simoninithomas.github.io/Deep_reinforcement_learning_Course/
https://youtu.be/ErfnhcEV1O8

FEI KEM

53

[16]. Schulman, John et al. High-Dimensional Continuous Control Using Generalized Advantage

Estimation. s.I. : arXiv preprint, 2015, arXiv:1506.02438.

[17]. Andrychowicz, Marcin et al. Hindsight Experience Replay. s.I. : arXiv preprint, 2017,

arXiv:1707.01495

[18]. Plappert, Matthias et al. Ingredients for Robotics Research. OpenAI. [Online] 26. February

2018. [Cited: 16. April 2020.] https://openai.com/blog/ingredients-for-robotics-research/

[19]. Fujimoto, Scott et al. Addressing Function Approximation Error in Actor-Critic Methods. s.I.

: arXiv preprint, 2018, arXiv:1802.09477

[20]. Ďurovský, František. Vision system for robot-human cooperation. 2017. Technical

University of Košice.

[21]. Duan, Yan. Sampling-based Approximations and Function Fitting. [Online] 5. October 2017.

[Cited: 16. April 2020.] https://youtu.be/qO-HUo0LsO4

[22]. Mnih, Volodymyr. Deep Q-Networks. [Online] 5. October 2017. [Cited: 16. April 2020.]

https://youtu.be/fevMOp5TDQs

[23]. Haarnoja, Tuomas et al. Soft Actor-Critic Algorithms and Applications. s.I. : arXiv preprint,

2018, arXiv:1812.05905

[24]. KR AGILUS. [Online] KUKA. 6. September 2017. [Cited: 16. April 2020.]

https://www.kuka.com/sk-sk/produkty-a-slu%C5%BEby/robotick%C3%A9-

syst%C3%A9my/industrial-robots/kr-agilus

[25]. Gym RL environments. [Online] OpenAI. [Cited: 16. April 2020.] https://gym.openai.com/

https://openai.com/blog/ingredients-for-robotics-research/
https://youtu.be/qO-HUo0LsO4
https://youtu.be/fevMOp5TDQs
https://www.kuka.com/sk-sk/produkty-a-slu%C5%BEby/robotick%C3%A9-syst%C3%A9my/industrial-robots/kr-agilus
https://www.kuka.com/sk-sk/produkty-a-slu%C5%BEby/robotick%C3%A9-syst%C3%A9my/industrial-robots/kr-agilus
https://gym.openai.com/

FEI KEM

54

Appendices

Appendix A: DVD with electronic version of the thesis, videos and source codes

Appendix B: Hyperparameters

FEI KEM

55

Appendix B: Hyperparameters

Parameter Value

optimizer Adam

learning rate 10−3

discount (𝛾) 0,99

replay buffer size 106

number of hidden layers (all networks) 2

number of hidden units per layer 256

number of samples per minibatch 256

nonlinearity ReLu

polyak hyperparameter (𝜌) 0,995

target entropy -4

	List of Figures
	List of Tables
	List of Symbols and Abbreviations
	1. Introduction
	2. Reinforcement Learning
	2.1. Policy
	2.1.1. Categorical Policy
	2.1.2. Gaussian Policy

	2.2. Reward and Return
	2.3. Value functions
	2.3.1. Bellman Equations

	2.4. Actor-Critic Taxonomy
	2.4.1. Critic-only Methods
	2.4.2. Actor-only Methods
	2.4.3. Actor-Critic Methods

	3. Hindsight Experience Replay
	4. Soft Actor-Critic
	4.1. Maximum Entropy RL
	4.2. Target Network
	4.3. Clipped Double Q-learning
	4.4. SAC Algorithm
	4.4.1. Automating Entropy Adjustment

	5. Implementation of RL Within ROS
	5.1. ROS
	5.2. KUKA Agilus
	5.2.1. Robot Model
	5.2.2. Robot Kinematics

	5.3. Basic Motion Control Architecture
	5.4. KUKA Reach
	5.4.1. Reward Function
	5.4.2. States
	5.4.3. Actions
	5.4.4. ROS Mechanism

	5.5. KUKA Push
	5.5.1. Kinect v2 Sensor
	5.5.1.1. Camera Calibration
	5.5.1.2. Hand-Eye Calibration

	5.5.1. Reward Function
	5.5.2. States and Actions
	5.5.3. ROS Mechanism

	Conclusion
	Bibliography
	Appendices

